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LEVER TO THE EDITOR 

Mapping of shape invariant potentials under point 
canonical transformations 

R Det, R Duttt  and U Sukhatmet 
7 Department of Physics, Visva-Bharati University, Santiniketan 731235, West Bengal, India 
t Department of Physics, University of Illinois at Chicago, Chicago, IL 60680, USA 

Abstract. We give explicit point canonical transformations which map twelve types of 
shape invariant potentials (which are known to be exanly solvable) into two potential 
classes. The eigenfunctions in these two classes are given by hypergeometric and confluent 
hypergeometric functions respectively. 

The application of supersymmetry to quantum mechanics [l]  has revived fresh interest 
in the problem of obtaining algebraic solutions of exactly solvable non-relativistic 
potentials. In an interesting paper, Gendenshtein [Z] showed that whenever a parametric 
relation, the so-called 'shape invariance' condition, is satisfied by two supersymmetric 
partner potentials, the bound state spectra and eigenfunctions can be readily determined 
by purely algebraic means using factorizability of the Hamiltonians. This generalization 
is in many respects equivalent to the earlier work of Schrodinger [3] and Infeld and 
Hull [4]. Using the concept of shape invariance, Dutt ef a/ [ 5 ]  have explicitly worked 
out the bound state spectra for eleven types of shape invariant potentials. Subsequently, 
using the operator formalism, Dabrowska el al [6] have shown a n  elegant way of 
writing the eigenfunctions for all these problems. Recently, Barclay and Maxwell [7] 

superpotential W = A tan( a x )  + E /  A, and is the trigonometric version of the Rosen- 
Morse potential.) 

There also exist other solvable potentials for which the factorization procedure is 
not applicable, since they are not shape invariant [X, 91. It has been shown by Cooper 
el a/ [9] that many such potentials (for example, the Natanzon potentials [lo]), can 

invariant potentials. This procedure neither preserves shape invariance nor, in general, 
transforms a potential into its supersymmetric partner potential. In fact, the general 
method of operator $transformations yields new solvable potentials and does not 
depend on supersymmetry. Alternatively, the techniques of supersymmetric quantum 
mechanics can be used to generate multi-parameter families of solvable potentials 
which are strictly isospectral to any given shape invariant potential [ l l l .  The number 
of solvable families can be yet further enlarged by using the Abraham-Moses and 
Pursey procedures for deleting and inserting bound states 1121 instead of the customary 
Darboux procedure used in supersymmetric quantum mechanics. 

At this stage, it is quite natural to ask whether it is possible to interrelate the twelve 
known types of shape invariant potentials among themselves via transformations 
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analogous to the $transformation. We find that this is indeed the case; the known 
types of shape invariant potentials can be grouped into two classes in the sense that 
the potentials in any class can all be mapped to a single potential in that class through 
point canonical transformations (PCT) [13]. PCT have been studied in the path integral 
approach to quantum mechanical problems [ 14,151, Pak and Sokmen [ 161 and lnomata 
[17] suggested that PCT together with a path dependent time transformation (local 
time transformation) could reduce a few solvable potential kernels to the kernels of 
either the harmonic oscillator or Scarf potentials [15,18]. However, in path integral 
calculations, the mathematical manoeuvring of steps becomes so complicated due to 
the combined transformations of space and time variables that the mapping of all 
shape invariant potentials has not yet been done. 

In this letter, we show that a much simpler approach consists of mapping through 
canonical transformation of coordinates which interrelate the Hilbert spaces of various 
shape invariant potentials. A similar suggestion has been made recently by Junker 
[ 191. The general method of transformation of the time-independent Schrodinger 
equation into a hypergeometric equation goes back to Manning [ZO]. The method was 
further studied by other authors [21]. We re-establish the known result that the Coulomb 
and Morse potentials can be mapped into the three-dimensional harmonic oscillator. 
These types of potentials form one class. For these class I potentials, the eigenfunctions 
correspond to confluent hypergeometric functions which can be written as Laguerre 
polynomials. Furthermore, using PCT, we show that potentials such as the Rosen-Morse 
(hyperbolic and trigonometric), Eckart, Poschl-Teller (I and II),  etc. can be mapped 
into the generalized Scarf potential, and they form a second class. For these class I1 
potentials, the eigenfunctions correspond to hypergeometric functions which can be 
written as associated Legendre functions. 

After presenting the general formulation of PCT as applied to the Schrodinger 
equation, we illustrate the procedure with a simple example. We show the steps 
necessary to connect the energy eigenvalues and eigenfunctions of the hyperbolic 
Rosen-Morse potential with those ofthegeneralized Scarf potential, which corresponds 
to the superpotential W = -A cot(ax) + B cosec(ax), O <  ax < T, A > E. For all other 
types of shape invariant potentials, we cite the appropriate transformations of coordin- 
ates and the energy eigenvalues and eigenfunctions in tables 1 and 2. From the tables, 
one can easily find the sequence of transformations necessary to map any potential of 
a given class to another one belonging to the same class. In this respect, our work is 
related to the group theoretical classification of solvable potentials [22,23]. 

First we give the general PCT which transforms the time-independent Schrodinger 
equation for a given shape invariant potential V ( a i ;  x). 

+ V ( a , ; X ) - - E ( a j )  +(q;x)=O 
2m dx2 1 

to a corresponding one 

for which &(&; z) and &(a i i )  are assumed to be known for the shape invariant 
potential v(&; z) for each state labelled by the quantum number n = 0,1,2, . . . . Here 
{a i ]  and { G j ]  represent sets of parameters of the original (old) and transformed (new) 
potentials respectively. 
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Invoking a transformation of both the independent and dependent variables of the 
form 

x =f ( 2 )  $(ai; x) = u(z)$(&; 2 )  (3) 

equation (1) becomes 

in which the prime denotes differentiation with respect to the variable z. To remove 
the first derivative term in (4) one requires 

u ( z ) = C V m  ( 5 )  

where C is a constant of integration. For a known transformation function 1; one then 
finds the wavefunction of the original problem in terms of the known eigenfunctions 

( 6 )  

Once the desired eigenfunction is obtained in terms of the transformed variable, it 
may easily be expressed in terms of the true one by inverse transformation. Using ( 5 )  
and comparing equations (2) and (4) term by term, we write 

$(Gf (2)) = c m $ ( & ;  2). 

v(&<; z) -Z(&)=  U ( a c ;  2 )  (7) 

where 

The transformation function f has to be chosen such that the functional form of 
U ( a j ;  z )  as given by (8) is identical to  that of the known potential v(&; 2 ) .  The energy 
eigenvalues E(aj)  can then be determined from the known values of Z ( a ; )  and the 
parameters obtained through inverse mapping. Our scheme is in many ways similar 
to that proposed in [19]. 

To see how the method works, we consider the Rosen-Morse potential [SI 

B2 
V(A, B, a; x ) = A 2 + ~ + 2 B  A tanh(ax)-A ( A+- Z ) s e c h 2 ( a x ) .  (9) 

Using the point canonical transformation 

1 
x =  f(z)=-tanh-’(cos(az)) 

(1 

one obtains from tquations (8) and (10) 

U(A, B, a; 2 )  

= [ A2+---- :: “b2 E 3 cosec2(az)+2B cosec(az) cot(az) 

- [A (A +*) JTiii +%I. 
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We now take the known potential to be the generalized Scarf potential [5] 

?(A, i, a; 2) 
== -A2+ A ~ + B ~ - -  cosec2(az) - ( -  - 

- B  -( 2A--  - $) cosec(az) cot(ar) 

for which 

are known. Using equations (12), (13) and (14a) in (7) and comparing like terms we 
get 

From equations (146) and (14c) one obtains 

Equation (14a) in conjunction with (15) gives the eigenvalues of the Rosen-Morse 
potential: 

Also from equations ( 6 ) ,  (13) and (15); the unnormalized eigenfunction is obtained 
after inverse transformation of the variable 

+.(A, B, U ;  x) = [l -tanh(ax)lP"[1+tanh(~x)]4~2P'R."(tanh(~x)) 

The results given in equations (16) and (17) are the same as those obtained in [SI and 
[6 ]  through operator techniques using the condition for shape invariance. 
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Similar mapping procedures can be followed starting from other types of shape 
invariant potentials. In table 1, we give the mapping functions for the Coulomb and 
Morse potentials which may be expressed in terms of the three-dimensional harmonic 
oscillator. (The one-dimensional harmonic oscillator is the I = 0 special case of the 
three-dimensional oscillator, and its Hermite polynomial eigenfunctions are easily 
expressed as confluent hypergeometric functions [24].) In table 2, we present results 
for all other known types of shape invariant potentials like the Eckart, Poscbl-Teller, 
etc, which can be mapped to the generalized Scarf potential. It is quite evident that 
the potentials in these two classes correspond to eigenfunctions which are represented 
by confluent hypergeometric and hypergeometric functions respectively. Finally, it 
should be mentioned that mappings via point canonical transformations can also be 
used to interrelate the reflection and transmission coefficients and S-matrices of various 
types of shape invariant potentials [ 2 5 ] .  

We would like to thank M M Panja for interesting discussions. One of us (R De) 
wishes to thank the University Grants Commission, Government of India for financial 
support. This work was also supported in part by the US Department of Energy. 
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